organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(6-Bromomethyl-2-pyridyl)acetamide

Hoong-Kun Fun,^a* Iia Hao Goh,^a§ Nirmal Kumar Das,^b Debabrata Sen^b and Shyamaprosad Goswami^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India Correspondence e-mail: hkfun@usm.my

Received 30 August 2010; accepted 31 August 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.033; wR factor = 0.100; data-to-parameter ratio = 30.1.

The title acetamide compound, C₈H₉BrN₂O, crystallizes with three crystallographically independent molecules (A, B and C) in the asymmetric unit. In molecule A, the mean plane through the acetamide unit is inclined at a dihedral angle of $4.40 (11)^{\circ}$ with respect to the pyridine ring $[10.31 (12) \text{ and } 2.27 (11)^{\circ}$, respectively, for molecules B and C]. In the crystal structure, molecules are interconnected into sheets parallel to the ac plane by N-H···O, C-H···Br, C-H···O and C-H···N hydrogen bonds. The structure is further stabilized by weak intermolecular $C - H \cdots \pi$ interactions.

Related literature

For general background and applications of acetamide compounds, see: Goswami et al. (2000, 2005); Ghosh & Masanta (2006). For the preparation, see: Goswami et al. (2001, 2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data C₈H₉BrN₂O $M_r = 229.08$

Monoclinic, $P2_1/c$ a = 4.1894 (8) Å b = 26.219 (5) Å c = 23.817 (4) Å $\beta = 94.148 \ (4)^{\circ}$

V = 2609.2 (8) Å³ Z = 12Mo Ka radiation $\mu = 4.68 \text{ mm}^{-1}$ T = 100 K $0.31\,\times\,0.14\,\times\,0.09$ mm

‡ Thomson Reuters ResearcherID: A-3561-2009. § Thomson Reuters ResearcherID: C-7576-2009.

Data collection

Bruker APEXII DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\rm min} = 0.323, T_{\rm max} = 0.668$

Refinement

R

$R[F^2 > 2\sigma(F^2)] = 0.033$	H atoms treated by a mixture of
$wR(F^2) = 0.100$	independent and constrained
S = 1.06	refinement
10228 reflections	$\Delta \rho_{\rm max} = 1.37 \text{ e} \text{ Å}^{-3}$
340 parameters	$\Delta \rho_{\rm min} = -0.74 \text{ e} \text{ Å}^{-3}$

72227 measured reflections

 $R_{\rm int} = 0.058$

10228 independent reflections

8239 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2A-C6A/N1A and C2C-C6C/N1C pyridine rings, respectively.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{ccccccc} N2A-H2NA\cdotsO1C^{i} & 0.74 & (3) & 2.29 & (3) & 3.022 & (2) & 172 & (4) \\ N2B-H2NB\cdotsO1A & 0.93 & (3) & 1.97 & (3) & 2.885 & (2) & 166 & (3) \\ N2C-H2NC\cdotsO1B^{ii} & 0.73 & (3) & 2.18 & (3) & 2.900 & (2) & 169 & (3) \\ C1B-H1BA\cdotsBr1B^{iii} & 0.97 & 2.85 & 3.716 & (2) & 149 \\ C8B-H8BB\cdotsO1A & 0.96 & 2.50 & 3.159 & (3) & 125 \\ C8C-H8CA\cdotsN1A^{iv} & 0.96 & 2.50 & 3.427 & (3) & 162 \\ C1A-H1AB\cdotsCg1^{iii} & 0.97 & 2.88 & 3.612 & (2) & 133 \\ C1C-H1CB\cdotsCg2^{iii} & 0.97 & 2.81 & 3.447 & (2) & 124 \\ \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$\begin{array}{l} N2A - H2NA \cdots O1C^{i} \\ N2B - H2NB \cdots O1A \\ N2C - H2NC \cdots O1B^{ii} \\ C1B - H1BA \cdots Br1B^{iii} \\ C8B - H8BB \cdots O1A \\ C8C - H8CA \cdots N1A^{iv} \\ C1A - H1AB \cdots Cg1^{iii} \\ C1C - H1CB \cdots Cg2^{iii} \end{array}$	0.74 (3) 0.93 (3) 0.73 (3) 0.97 0.96 0.96 0.97 0.97	2.29 (3) 1.97 (3) 2.18 (3) 2.85 2.50 2.50 2.88 2.81	3.022 (2) 2.885 (2) 2.900 (2) 3.716 (2) 3.159 (3) 3.427 (3) 3.612 (2) 3.447 (2)	172 (4) 166 (3) 169 (3) 149 125 162 133 124

Symmetry codes: (i) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z + 1; (iii) x + 1, y, z; (iv) $x - 1, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). JHG also thanks USM for the award of a USM Fellowship. SG and DS acknowledge the DST and CSIR, Government of India, for funding. NKD acknowedges the UGC for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5177).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Ghosh, K. & Masanta, G. (2006). Tetrahedron Lett. 47, 9233-9237.
- Goswami, S., Dey, S., Jana, S. & Adak, A. K. (2004). Chem. Lett. 33, 916-917.
- Goswami, S., Ghosh, K. & Dasgupta, S. (2000). J. Org. Chem. 65, 1907-1914. Goswami, S., Ghosh, K., Mukherjee, R., Adak, A. K. & Mahapatra, A. K.
- (2001). J. Heterocycl. Chem. 38, 173-178.
- Goswami, S., Mukherjee, R. & Roy, J. (2005). Org. Lett. 7, 1283-1285.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2010). E66, o2500 [doi:10.1107/S1600536810035026]

N-(6-Bromomethyl-2-pyridyl)acetamide

H.-K. Fun, J. H. Goh, N. K. Das, D. Sen and S. Goswami

Comment

Pyridine amides having bromine in side chains are enormously useful as they are suitable intermediates for the synthesis of flexible receptors for various biologically important substrates. In addition, they can easily be coupled with alcohol by Williamson reaction and to the amine by a simple reaction with a base. These types of compounds are therefore attracting the attention of molecular recognition chemist (Goswami *et al.*, 2000, 2005; Ghosh & Masanta, 2006).

The title acetamide compound crystallizes in space group $P2_1/c$ with three crystallographically independent molecules in the asymmetric unit, designated *A*, *B* and *C* (Fig. 1). The molecular geometries of all molecules are essentially similar, as indicated by the r.m.s. deviations for the superposition of the non-H atoms of any pair of molecules using *XP* in *SHELXTL* (Sheldrick, 2008) being 0.137 (*A*/*B* pair), 0.026 (*A*/*C* pair) and 0.130 Å (*B*/*C* pair). The superposition of molecular pairs are shown in Fig. 2. The corresponding geometric parameters of the three molecules agree well with each other. In molecule *A*, the mean plane formed through the acetamide moiety (N2A/C7A/C8A/O1A) is inclined at an interplanar angle of 4.40 (11)° with the pyridine ring (C2A-C6A/N1A); the respective angles for molecules *B* and *C* are 10.31 (2) and 2.27 (11)°, respectively.

In the crystal structure, intermolecular N2A—H2NA···O1C, N2B—H2NB···O1A, N2C—H2NC···O1B, C1B—H1BA···Br1B, C8B—H8BB···O1A and C8C—H8CA···N1A hydrogen bonds (Table 1) interconnect molecules into two-molecule-wide arrays parallel to *ac* plane (Fig. 3). Further stabilization of the crystal structure is provided by weak intermolecular C1A—H1AB···*Cg*1 and C1C—H1CB···*Cg2* interactions (Table 1) where *Cg*1 and *Cg2* are the centroids of C2A-C6A/N1A and C2C-C6C/N1C pyridine rings, respectively.

Experimental

The title compound was prepared according to literature procedures (Goswami *et al.*, 2001, 2004) and was recrystallized from a mixture of CHCl₃ and CH₃OH (9:1) by slow evaporation method.

Refinement

H atoms bound to N atoms are located in a difference Fourier map and allowed to refine freely [range of N—H = 0.73 (3)–0.93 (3) Å]. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with $U_{iso} = 1.2$ or 1.5 $U_{eq}(C)$. The rotating group model was applied to methyl groups.

Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2. Fit of (a) molecule A (dashed lines) on molecule B (solid lines), (b) molecule C (dashed lines) on molecule A (solid lines), (c) molecule C (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.

Fig. 3. The crystal structure of the title compound, viewed along the *a* axis. Intermolecular hydrogen bonds are shown as dashed lines.

N-(6-Bromomethyl-2-pyridyl)acetamide

Crystal data

 $C_8H_9BrN_2O$ $M_r = 229.08$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 4.1894 (8) Å b = 26.219 (5) Å F(000) = 1368 $D_x = 1.750 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 9903 reflections \theta = 3.0-33.5^\circ \mu = 4.68 \text{ mm}^{-1}

<i>c</i> = 23.817 (4) Å
$\beta = 94.148 \ (4)^{\circ}$
$V = 2609.2 (8) \text{ Å}^3$
Z = 12

Data collection

Bruker APEXII DUO CCD area-detector diffractometer	10228 independent reflections
Radiation source: fine-focus sealed tube	8239 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.058$
φ and ω scans	$\theta_{\text{max}} = 33.7^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2009)	$h = -6 \rightarrow 6$
$T_{\min} = 0.323, T_{\max} = 0.668$	$k = -40 \longrightarrow 40$
72227 measured reflections	$l = -36 \rightarrow 36$

T = 100 KPlate, brown

 $0.31\times0.14\times0.09~mm$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.100$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.052P)^{2} + 0.7624P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
10228 reflections	$(\Delta/\sigma)_{\rm max} = 0.005$
340 parameters	$\Delta \rho_{max} = 1.37 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.74 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1A	1.14992 (5)	0.418118 (8)	0.367324 (7)	0.02031 (5)
O1A	0.5948 (4)	0.25161 (6)	0.13677 (6)	0.0296 (3)
N1A	1.1052 (4)	0.35205 (6)	0.24649 (6)	0.0167 (3)
N2A	0.9447 (4)	0.27575 (6)	0.20938 (7)	0.0191 (3)
C1A	1.3223 (5)	0.42675 (8)	0.29327 (7)	0.0196 (3)
H1AA	1.3460	0.4628	0.2856	0.024*
H1AB	1.5326	0.4112	0.2939	0.024*
C2A	1.1091 (4)	0.40309 (7)	0.24723 (7)	0.0166 (3)
C3A	0.9351 (5)	0.43276 (7)	0.20772 (7)	0.0186 (3)
НЗАА	0.9413	0.4682	0.2095	0.022*
C4A	0.7516 (5)	0.40783 (7)	0.16540 (7)	0.0200 (3)
H4AA	0.6331	0.4267	0.1382	0.024*
C5A	0.7432 (5)	0.35522 (7)	0.16334 (7)	0.0195 (3)
H5AA	0.6212	0.3381	0.1351	0.023*
C6A	0.9266 (4)	0.32861 (7)	0.20556 (7)	0.0171 (3)
C7A	0.7892 (5)	0.24022 (7)	0.17560 (8)	0.0198 (3)
C8A	0.8755 (5)	0.18609 (7)	0.18922 (8)	0.0235 (4)
H8AA	0.7098	0.1639	0.1735	0.035*
H8AB	0.8985	0.1818	0.2293	0.035*
H8AC	1.0738	0.1778	0.1735	0.035*
Br1B	0.14297 (5)	0.058241 (8)	0.203481 (7)	0.02180 (5)
O1B	0.0701 (5)	0.23172 (6)	-0.04493 (7)	0.0359 (4)
N1B	0.2651 (4)	0.12464 (6)	0.08249 (6)	0.0174 (3)
N2B	0.2563 (4)	0.20320 (6)	0.04135 (7)	0.0206 (3)
C1B	0.3307 (5)	0.04503 (8)	0.13130 (8)	0.0209 (3)
H1BA	0.5573	0.0530	0.1351	0.025*
H1BB	0.3086	0.0091	0.1221	0.025*
C2B	0.1736 (4)	0.07590 (7)	0.08467 (7)	0.0170 (3)
C3B	-0.0419 (5)	0.05349 (7)	0.04525 (8)	0.0199 (3)
H3BA	-0.1004	0.0194	0.0482	0.024*
C4B	-0.1672 (5)	0.08373 (8)	0.00115 (8)	0.0215 (4)
H4BA	-0.3132	0.0700	-0.0260	0.026*
C5B	-0.0763 (5)	0.13402 (8)	-0.00257 (8)	0.0209 (3)
H5BA	-0.1573	0.1546	-0.0321	0.025*
C6B	0.1427 (5)	0.15320 (7)	0.03964 (7)	0.0174 (3)
C7B	0.2223 (6)	0.23918 (8)	0.00022 (8)	0.0251 (4)
C8B	0.3835 (7)	0.28927 (9)	0.01365 (10)	0.0352 (5)
H8BA	0.4373	0.3054	-0.0206	0.053*
H8BB	0.5750	0.2836	0.0375	0.053*
H8BC	0.2414	0.3109	0.0327	0.053*
Br1C	1.07629 (5)	0.426384 (8)	1.034127 (8)	0.02481 (6)
O1C	0.3915 (4)	0.28054 (6)	0.79326 (6)	0.0243 (3)
N1C	0.9830 (4)	0.36463 (6)	0.90997 (6)	0.0173 (3)
N2C	0.7488 (4)	0.29499 (6)	0.86856 (7)	0.0201 (3)
C1C	1.2666 (5)	0.43125 (8)	0.96116 (8)	0.0218 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H1CA	1.3315	0.4662	0.9550	0.026*
H1CB	1.4563	0.4100	0.9619	0.026*
C2C	1.0370 (5)	0.41486 (7)	0.91382 (7)	0.0174 (3)
C3C	0.8994 (5)	0.44982 (7)	0.87597 (7)	0.0202 (3)
НЗСА	0.9409	0.4845	0.8800	0.024*
C4C	0.6977 (5)	0.43147 (8)	0.83191 (7)	0.0209 (3)
H4CA	0.6031	0.4541	0.8056	0.025*
C5C	0.6360 (5)	0.37991 (7)	0.82678 (7)	0.0194 (3)
H5CA	0.5004	0.3671	0.7975	0.023*
C6C	0.7858 (4)	0.34775 (7)	0.86741 (7)	0.0168 (3)
C7C	0.5659 (5)	0.26431 (7)	0.83320 (7)	0.0196 (3)
C8C	0.5926 (6)	0.20884 (8)	0.84701 (9)	0.0271 (4)
H8CA	0.5007	0.1892	0.8159	0.041*
H8CB	0.4802	0.2018	0.8799	0.041*
H8CC	0.8140	0.1999	0.8541	0.041*
H2NA	1.062 (8)	0.2645 (13)	0.2303 (13)	0.045 (9)*
H2NB	0.372 (8)	0.2135 (12)	0.0743 (12)	0.039 (8)*
H2NC	0.850 (8)	0.2790 (12)	0.8879 (12)	0.033 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	0.02104 (9)	0.02320 (9)	0.01647 (8)	-0.00081 (6)	-0.00005 (6)	-0.00327 (6)
O1A	0.0389 (9)	0.0208 (7)	0.0268 (7)	-0.0026 (6)	-0.0141 (6)	-0.0012 (6)
N1A	0.0182 (7)	0.0163 (7)	0.0152 (6)	-0.0005 (5)	-0.0012 (5)	-0.0013 (5)
N2A	0.0228 (8)	0.0159 (7)	0.0177 (7)	0.0005 (6)	-0.0055 (6)	-0.0011 (5)
C1A	0.0198 (8)	0.0209 (8)	0.0181 (7)	-0.0055 (6)	0.0007 (6)	-0.0008 (6)
C2A	0.0166 (8)	0.0171 (7)	0.0163 (7)	-0.0012 (6)	0.0014 (6)	-0.0006 (6)
C3A	0.0233 (9)	0.0161 (7)	0.0163 (7)	0.0004 (6)	0.0015 (6)	0.0022 (6)
C4A	0.0235 (9)	0.0201 (8)	0.0163 (7)	0.0014 (7)	-0.0007 (6)	0.0018 (6)
C5A	0.0238 (9)	0.0194 (8)	0.0146 (7)	0.0004 (6)	-0.0032 (6)	-0.0006 (6)
C6A	0.0187 (8)	0.0175 (8)	0.0148 (7)	0.0001 (6)	-0.0005 (6)	-0.0019 (6)
C7A	0.0234 (9)	0.0171 (8)	0.0186 (7)	-0.0017 (6)	-0.0007 (6)	-0.0022 (6)
C8A	0.0287 (10)	0.0177 (8)	0.0236 (8)	-0.0001 (7)	-0.0020 (7)	-0.0032 (7)
Br1B	0.02550 (10)	0.02243 (10)	0.01691 (8)	0.00067 (7)	-0.00224 (6)	0.00250 (6)
O1B	0.0555 (11)	0.0220 (7)	0.0271 (7)	-0.0039 (7)	-0.0182 (7)	0.0056 (6)
N1B	0.0190 (7)	0.0172 (7)	0.0156 (6)	0.0021 (5)	-0.0022 (5)	-0.0002 (5)
N2B	0.0279 (8)	0.0166 (7)	0.0163 (6)	0.0006 (6)	-0.0051 (6)	-0.0002 (5)
C1B	0.0214 (9)	0.0194 (8)	0.0218 (8)	0.0032 (6)	0.0007 (7)	0.0027 (6)
C2B	0.0175 (8)	0.0177 (8)	0.0157 (7)	0.0022 (6)	0.0008 (6)	0.0002 (6)
C3B	0.0219 (9)	0.0194 (8)	0.0186 (7)	-0.0021 (7)	0.0020 (6)	-0.0033 (6)
C4B	0.0225 (9)	0.0252 (9)	0.0165 (7)	-0.0013 (7)	-0.0018 (6)	-0.0035 (6)
C5B	0.0224 (9)	0.0234 (9)	0.0161 (7)	0.0021 (7)	-0.0032 (6)	-0.0008 (6)
C6B	0.0202 (8)	0.0165 (7)	0.0154 (7)	0.0015 (6)	-0.0005 (6)	-0.0010 (6)
C7B	0.0341 (11)	0.0175 (8)	0.0224 (8)	0.0024 (7)	-0.0064 (7)	0.0018 (7)
C8B	0.0512 (15)	0.0194 (9)	0.0323 (11)	-0.0037 (9)	-0.0145 (10)	0.0049 (8)
Br1C	0.02540 (10)	0.03212 (11)	0.01646 (8)	0.00276 (7)	-0.00162 (7)	-0.00555 (7)
O1C	0.0274 (8)	0.0223 (7)	0.0217 (6)	-0.0020 (5)	-0.0090 (5)	0.0002 (5)

supplementary materials

N1C	0.0183 (7)	0.0182 (7)	0.0150 (6)	-0.0008 (5)	-0.0012 (5)	-0.0007 (5)
N2C	0.0254 (8)	0.0161 (7)	0.0175 (7)	-0.0022 (6)	-0.0071 (6)	0.0018 (5)
C1C	0.0219 (9)	0.0223 (8)	0.0210 (8)	-0.0039 (7)	-0.0010 (6)	-0.0019 (7)
C2C	0.0189 (8)	0.0189 (8)	0.0145 (7)	-0.0011 (6)	0.0013 (6)	-0.0009 (6)
C3C	0.0260 (9)	0.0181 (8)	0.0162 (7)	-0.0017 (7)	-0.0004 (6)	-0.0011 (6)
C4C	0.0262 (9)	0.0208 (8)	0.0152 (7)	0.0015 (7)	-0.0025 (6)	0.0032 (6)
C5C	0.0221 (9)	0.0203 (8)	0.0151 (7)	0.0008 (6)	-0.0031 (6)	0.0006 (6)
C6C	0.0186 (8)	0.0174 (8)	0.0142 (7)	0.0000 (6)	-0.0009 (6)	-0.0006 (6)
C7C	0.0210 (9)	0.0198 (8)	0.0177 (7)	-0.0025 (6)	-0.0012 (6)	-0.0019 (6)
C8C	0.0355 (12)	0.0187 (9)	0.0254 (9)	-0.0045 (8)	-0.0099 (8)	0.0008 (7)

Geometric parameters (Å, °)

Br1A—C1A	1.9667 (18)	C3B—C4B	1.389 (3)
O1A—C7A	1.224 (2)	СЗВ—НЗВА	0.93
N1A—C6A	1.335 (2)	C4B—C5B	1.377 (3)
N1A—C2A	1.338 (2)	C4B—H4BA	0.93
N2A—C7A	1.365 (2)	C5B—C6B	1.404 (3)
N2A—C6A	1.391 (2)	C5B—H5BA	0.93
N2A—H2NA	0.74 (3)	C7B—C8B	1.501 (3)
C1A—C2A	1.498 (3)	C8B—H8BA	0.96
C1A—H1AA	0.97	C8B—H8BB	0.96
C1A—H1AB	0.97	C8B—H8BC	0.96
C2A—C3A	1.387 (3)	Br1C—C1C	1.968 (2)
C3A—C4A	1.386 (3)	O1C—C7C	1.233 (2)
СЗА—НЗАА	0.93	N1C—C6C	1.336 (2)
C4A—C5A	1.380 (3)	N1C—C2C	1.338 (2)
C4A—H4AA	0.93	N2C—C7C	1.360 (2)
C5A—C6A	1.406 (2)	N2C—C6C	1.392 (2)
С5А—Н5АА	0.93	N2C—H2NC	0.73 (3)
C7A—C8A	1.494 (3)	C1C—C2C	1.491 (3)
C8A—H8AA	0.96	C1C—H1CA	0.97
C8A—H8AB	0.96	C1C—H1CB	0.97
C8A—H8AC	0.96	C2C—C3C	1.382 (3)
Br1B—C1B	1.9722 (19)	C3C—C4C	1.385 (3)
O1B—C7B	1.225 (2)	СЗС—НЗСА	0.93
N1B—C2B	1.336 (2)	C4C—C5C	1.380 (3)
N1B—C6B	1.338 (2)	C4C—H4CA	0.93
N2B—C7B	1.360 (2)	C5C—C6C	1.398 (2)
N2B—C6B	1.394 (2)	C5C—H5CA	0.93
N2B—H2NB	0.93 (3)	C7C—C8C	1.494 (3)
C1B—C2B	1.489 (3)	C8C—H8CA	0.96
C1B—H1BA	0.97	C8C—H8CB	0.96
C1B—H1BB	0.97	C8C—H8CC	0.96
C2B—C3B	1.385 (3)		
C6A—N1A—C2A	118.40 (15)	C5B—C4B—H4BA	119.9
C7A—N2A—C6A	128.33 (16)	C3B—C4B—H4BA	119.9
C7A—N2A—H2NA	113 (3)	C4B—C5B—C6B	117.78 (17)
C6A—N2A—H2NA	118 (3)	C4B—C5B—H5BA	121.1

C2A—C1A—Br1A	111.74 (13)	C6B—C5B—H5BA	121.1
C2A—C1A—H1AA	109.3	N1B—C6B—N2B	113.14 (16)
Br1A—C1A—H1AA	109.3	N1B—C6B—C5B	122.70 (17)
C2A—C1A—H1AB	109.3	N2B—C6B—C5B	124.16 (16)
Br1A—C1A—H1AB	109.3	O1B—C7B—N2B	122.83 (19)
H1AA—C1A—H1AB	107.9	O1B—C7B—C8B	121.62 (19)
N1A—C2A—C3A	123.14 (17)	N2B—C7B—C8B	115.54 (17)
N1A—C2A—C1A	115.46 (16)	C7B—C8B—H8BA	109.5
C3A—C2A—C1A	121.39 (17)	C7B—C8B—H8BB	109.5
C4A—C3A—C2A	117.74 (17)	H8BA—C8B—H8BB	109.5
С4А—С3А—НЗАА	121.1	C7B—C8B—H8BC	109.5
С2А—С3А—НЗАА	121.1	H8BA—C8B—H8BC	109.5
C5A—C4A—C3A	120.55 (17)	H8BB—C8B—H8BC	109.5
С5А—С4А—Н4АА	119.7	C6C—N1C—C2C	118.06 (16)
СЗА—С4А—Н4АА	119.7	C7C—N2C—C6C	129.32 (16)
C4A—C5A—C6A	117.35 (17)	C7C—N2C—H2NC	109 (2)
С4А—С5А—Н5АА	121.3	C6C—N2C—H2NC	121 (2)
С6А—С5А—Н5АА	121.3	C2C—C1C—Br1C	111.62 (13)
N1A—C6A—N2A	112.72 (16)	C2C—C1C—H1CA	109.3
N1A—C6A—C5A	122.82 (17)	Br1C—C1C—H1CA	109.3
N2A—C6A—C5A	124.46 (16)	C2C—C1C—H1CB	109.3
O1A—C7A—N2A	122.80 (18)	Br1C—C1C—H1CB	109.3
O1A—C7A—C8A	122.20 (17)	H1CA—C1C—H1CB	108.0
N2A—C7A—C8A	114.99 (17)	N1C—C2C—C3C	123.20 (17)
С7А—С8А—Н8АА	109.5	N1C—C2C—C1C	115.60 (16)
С7А—С8А—Н8АВ	109.5	C3C—C2C—C1C	121.18 (17)
Н8АА—С8А—Н8АВ	109.5	C2C—C3C—C4C	117.81 (18)
С7А—С8А—Н8АС	109.5	С2С—С3С—Н3СА	121.1
Н8АА—С8А—Н8АС	109.5	С4С—С3С—Н3СА	121.1
Н8АВ—С8А—Н8АС	109.5	C5C—C4C—C3C	120.48 (17)
C2B—N1B—C6B	118.02 (16)	С5С—С4С—Н4СА	119.8
C7B—N2B—C6B	127.83 (16)	СЗС—С4С—Н4СА	119.8
C7B—N2B—H2NB	115.3 (19)	C4C—C5C—C6C	117.26 (17)
C6B—N2B—H2NB	116.8 (19)	С4С—С5С—Н5СА	121.4
C2B—C1B—Br1B	111.85 (13)	С6С—С5С—Н5СА	121.4
C2B—C1B—H1BA	109.2	N1C—C6C—N2C	112.20 (16)
Br1B—C1B—H1BA	109.2	N1C—C6C—C5C	123.19 (17)
C2B—C1B—H1BB	109.2	N2C—C6C—C5C	124.62 (16)
Br1B—C1B—H1BB	109.2	O1C—C7C—N2C	123.35 (18)
H1BA—C1B—H1BB	107.9	O1C—C7C—C8C	122.47 (17)
N1B—C2B—C3B	123.66 (17)	N2C—C7C—C8C	114.18 (16)
N1B—C2B—C1B	115.86 (16)	С7С—С8С—Н8СА	109.5
C3B—C2B—C1B	120.41 (17)	С7С—С8С—Н8СВ	109.5
C2B—C3B—C4B	117.55 (18)	Н8СА—С8С—Н8СВ	109.5
С2В—С3В—Н3ВА	121.2	С7С—С8С—Н8СС	109.5
С4В—С3В—Н3ВА	121.2	H8CA—C8C—H8CC	109.5
C5B—C4B—C3B	120.29 (18)	H8CB—C8C—H8CC	109.5
C6A—N1A—C2A—C3A	04(3)	C2B—N1B—C6B—N2B	-179 55 (16)
C6A - N1A - C2A - C1A	-178 19 (16)	C2B—N1B—C6B—C5B	01(3)
	1,0.17 (10)	C 1110 COD COD	··· (5)

supplementary materials

Br1A—C1A—C2A—N1A	-71.41 (19)	C7B—N2B—C6B—N1B	168.3 (2)
Br1A—C1A—C2A—C3A	110.00 (18)	C7B—N2B—C6B—C5B	-11.3 (3)
N1A—C2A—C3A—C4A	-0.5 (3)	C4B—C5B—C6B—N1B	0.3 (3)
C1A—C2A—C3A—C4A	177.93 (17)	C4B—C5B—C6B—N2B	179.93 (19)
C2A—C3A—C4A—C5A	0.3 (3)	C6B—N2B—C7B—O1B	2.6 (4)
C3A—C4A—C5A—C6A	0.1 (3)	C6B—N2B—C7B—C8B	-177.6 (2)
C2A—N1A—C6A—N2A	179.68 (16)	C6C—N1C—C2C—C3C	-0.1 (3)
C2A—N1A—C6A—C5A	0.0 (3)	C6C—N1C—C2C—C1C	-178.23 (17)
C7A—N2A—C6A—N1A	178.45 (19)	Br1C—C1C—C2C—N1C	-73.37 (19)
C7A—N2A—C6A—C5A	-1.9 (3)	Br1C—C1C—C2C—C3C	108.44 (18)
C4A—C5A—C6A—N1A	-0.2 (3)	N1C-C2C-C3C-C4C	-0.4 (3)
C4A—C5A—C6A—N2A	-179.84 (18)	C1C—C2C—C3C—C4C	177.65 (18)
C6A—N2A—C7A—O1A	-2.9 (3)	C2C—C3C—C4C—C5C	0.6 (3)
C6A—N2A—C7A—C8A	176.72 (18)	C3C—C4C—C5C—C6C	-0.3 (3)
C6B—N1B—C2B—C3B	-0.4 (3)	C2C—N1C—C6C—N2C	-179.58 (17)
C6B—N1B—C2B—C1B	176.64 (16)	C2C—N1C—C6C—C5C	0.4 (3)
Br1B—C1B—C2B—N1B	78.77 (19)	C7C—N2C—C6C—N1C	178.90 (19)
Br1B—C1B—C2B—C3B	-104.14 (18)	C7C—N2C—C6C—C5C	-1.1 (3)
N1B-C2B-C3B-C4B	0.2 (3)	C4C—C5C—C6C—N1C	-0.2 (3)
C1B—C2B—C3B—C4B	-176.68 (17)	C4C—C5C—C6C—N2C	179.76 (19)
C2B—C3B—C4B—C5B	0.3 (3)	C6C—N2C—C7C—O1C	-1.6 (3)
C3B—C4B—C5B—C6B	-0.5 (3)	C6C—N2C—C7C—C8C	178.7 (2)

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2A—H2NA···O1C ⁱ	0.74 (3)	2.29 (3)	3.022 (2)	172 (4)
N2B—H2NB…O1A	0.93 (3)	1.97 (3)	2.885 (2)	166 (3)
N2C—H2NC···O1B ⁱⁱ	0.73 (3)	2.18 (3)	2.900 (2)	169 (3)
C1B—H1BA…Br1B ⁱⁱⁱ	0.97	2.85	3.716 (2)	149
C8B—H8BB…O1A	0.96	2.50	3.159 (3)	125
C8C—H8CA…N1A ^{iv}	0.96	2.50	3.427 (3)	162
C1A—H1AB…Cg1 ⁱⁱⁱ	0.97	2.88	3.612 (2)	133
C1C—H1CB···Cg2 ⁱⁱⁱ	0.97	2.81	3.447 (2)	124
		(.) 1 .1/2	. 1 /0	

Symmetry codes: (i) x+1, -y+1/2, z-1/2; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x-1, -y+1/2, z+1/2.

(c)

